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Introduction

TFTR

e Alpha particles can drive and/or be expelled
by MHD in a D-T reactor.

oInITER:
> 5% alpha-loss may damage first wall.
large alpha-loss will reduce ignition margin.

e TWo important observations in recent TFTR
D-T experiments:

(1) Alpha-driven toroidal Alfven Eigenmodes
(TAES)

(2) Alpha-loss induced by kinetic ballooning
modes (KBMs)



Alpha-driven TAEs In TFTR

TFTR

@ Alpha-driven TAE not observed in previous
TFTR D-T experiments.

Fusion power < 10.7 MW, by < 0.3 %.

(expect by ~0.5-1% in ITER)

e Theory predicts TAE can be more unstable for:

Reduce beam and thermal ion Damping
(look in post NBI phase)

Low central magnetic shear [G. Fu et al]

High central q [D. Spong]



a-TAE Observed In TFTR

TFTR™
e@a-TAE observed in post neutral beam phase.
R=2.60 m, Ip:1.6 MA
-—— R=2.52 m, Ip:2.0 MA
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[R. Nazikian et al, '96 IAEA, submitted to P



Mode Freguency Consistent with
TAE Frequency

TFTR
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® f1ae =Val4paR

® High and low g(0) included



a-TAE Located in Plasma Core

TFTR™
® Nn=3 TAE observed on Core Reflectometer
Channel
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® Density perturbation analysis gives mode
location :
0.25<r/a<0.45

® /n»104 at r/a»0.42 --> B/B~10"5

(external ~B/B~1O'8)



High g(0) has Lower Threshold b,

TFTR

® Threshold b, Is a factor of 2 lower in high

o plasmas.
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Importance of High Central g

TFTR

® a-TAE plasmas have lower b, than supershot

e High qg reduces the b, threshold.
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® qq Is not the only parameter for a-TAE.



Mode Frequency Lies Inside Calculated Gap
iIn Nn=3 Alfvén Continuum

TFTR
NOVA-K code: Fu
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@ Stability analysis identifies dominant n=3 mode.



a- TAE Calculated Unstable In
High g(0) plasma

NOVA-K code: Fu

[FTR ™

e Low shear and high g(0) are destabilizing.

e Stability is sensitive to small change in g(0).
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[For more discussion, refer poster 1S29 by Fu]



a-TAE Peaks on High-Field Side

TFTR™

® Normal ballooning Structure for ICRF-TAE
and KBM
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No Alpha Loss due to a-TAE

TFTR

® Both fast-ion loss scaling and particle
simulation show:

Present a-TAE too weak to cause
measurable alpha loss.

Alpha Loss due to KBM Observed

® Significant alpha-loss enhancement observed
In kinetic-ballooning-mode (KBM) case.



Alpha Loss Correlated with KBM

TFTR
® Large enhanced loss observed in high-beta
high-power DT plasmas.
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® A factor of 2 loss increase due to n36 KBM.



The Ballooning Modes Locate
around Maximum NP

TFTR
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® Ballooning feature also observed from
Mirnov coills.



Results of KBM Stabllity Analysis

o TFTR
e Mode classification

» Not TAEs. (fTAE ~ 300 kHz)

» Not BAEs (beam-driven Alfven
eigenmodes):
W ~ W*pi/ 2 --- KBM scaling

» Different from idea ballooning disruption
precursor
==> Kinetic ballooning modes

eoKinetic FULL code calculation
--- G. Rewoldt and W. Tang
» Driven by background pressure gradient.
» Effects from beam-ion and alpha are small.
» Mode location agrees with experiment.
» Maximum linear growth rate has n=14.
(nonlinear effects may down-shift n.)

e [ wo-fluid calculation --- L. Zakharov
» Ballooning unstable.
> High n (>10) modes suppressed by wx;

effects.



Simulation of Wave-Particle Interaction

ORBIT code simulation --- R. White THIR

@ Basic feature:
passing alpha + KBMs ®

lose energy to KBM

change pitch angl e® trapped ® escape
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® KBMs can cause ~100% increase in lost alphas.
--- consistent with experiment.
® Global modes will be more dangerous.



Conclusions

TFTR
Alpha-driven TAE

e Observation of alpha-driven TAE opened a
new chapter in fusion plasma physics.

® |nitial analysis showed good agreement
between theory and experiment
(frequency, resonance, mode structure,
stability, ...).

KBM-induced alpha loss

e KBM In high-beta D-T plasmas caused
substantial alpha loss (a factor of 2
enhancement).

® Particle simulation quantitatively
demonstrated the alpha loss mechanism.
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